Invented 30 years ago, the atomic force microscope has been a major driver of nanotechnology, ranging from atomic-scale imaging to its latest applications in manipulating individual molecules, ...
Atomic force microscopy (AFM) is a method of topographical measurement, wherein a fine probe is raster scanned over a material, and the minute variation in probe height is interpreted by laser ...
A further development in atomic force microscopy now makes it possible to simultaneously image the height profile of nanometer-fine structures as well as the electric current and the frictional force ...
Microscopes have long been scientists’ eyes into the unseen, revealing everything from bustling cells to viruses and nanoscale structures. However, even the most powerful optical microscopes have been ...
First invented in 1985 by IBM in Zurich, Atomic Force Microscopy (AFM) is a scanning probe technique for imaging. It involves a nanoscopic tip attached to a microscopic, flexible cantilever, which is ...
Atomic force microscopy (AFM) is a way to investigate the surface features of some materials. It works by “feeling” or “touching” the surface with an extremely small probe. This provides a ...
Atomic force microscopy is a powerful technique that has been widely used in materials research, nano-imaging, and bioimaging. It is a topographical metrology approach that is commonly utilized in ...
A standard single frequency AFM is comprised of a boron-doped silicon (Si) or silicon nitride (Si 3 N 4) cantilever with a length of a few micrometers and a single crystal diamond tip at the bottom of ...
Researchers at Nano Life Science Institute (WPI-NanoLSI), Kanazawa University report in Small Methods the 3D imaging of a suspended nanostructure. The technique used is an extension of atomic force ...
Today we're looking at Atomic Force Microscopy! I built a "macro-AFM" to demonstrate the principles of an atomic force microscope, then we look at a real AFM (an nGauge AFM from ICSPI) and do a few ...